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ABSTRACT

We present a distributed cardinalized probability hypothesis density
(CPHD) filter for multi-sensor multi-target tracking. Each sensor
runs a single-sensor CPHD filter to compute the probability hypoth-
esis density (PHD) function and cardinality distribution using only
its own measurements and then fuses the local results by gossiping
with neighboring sensors. Existing schemes that fuse local results
using the Kullback-Leibler average are adversely affected if some
sensors do not detect a target. The proposed fusion strategy, based
on the arithmetic mean instead of the geometric mean, aims to be
more robust to missed detections. We also show via simulations that
the performance of the proposed algorithm can be significantly im-
proved, with a small additional communication overhead, by having
sensors exchange measurements locally.

Index Terms— Multi-target tracking, distributed tracking, prob-
ability hypothesis density, pairwise gossip

1. INTRODUCTION

Multi-target tracking is an essential building block in many applica-
tions. A network of sensors collects noisy measurements to locate
one or more targets. If multiple sensors are present, the measure-
ments from all sensors should be processed for improved tracking
performance. While transmitting all data to a central unit is a possi-
ble solution, a distributed approach is much preferred because there
is no communication bottleneck and the network is more resistant to
sensor failure.

In this paper, we present a distributed multi-sensor cardinal-
ized probability hypothesis density (CPHD) filter in which sensors
use randomized pairwise gossip [1] to exchange and fuse their PHD
functions and cardinality distributions. In particular, sensors repre-
sent the PHD function using a Gaussian mixture model (GMM), and
fusion is accomplished via the arithmetic mean, rather than the ge-
ometric mean used in [2]. We argue that using the arithmetic mean
leads to more robustness when not all sensors detect a target present,
and simulation results illustrate that the proposed approach adapts
more quickly to changes in the number of targets present.

1.1. Related work

Representing the target states as a random finite set (RFS) [3, 4] is
an attractive solution for multi-target tracking because the two un-
knowns of interest, the number of targets and their states, can be
captured in one single random variable. This also provides a sin-
gle integrated framework for data association and tracking. The
PHD [5] and CPHD [6] filters have been extensively studied, and
various implementations, including using Gaussian mixtures [7, 8]
and sequential Monte Carlo [9], have been proposed. The PHD filter
only estimates the distribution of target states and assumes that the

target cardinality follows a Poisson distribution. The CPHD filter
also estimates the target cardinality distribution and achieves better
performance at the cost of higher computational overhead. While
both filters are designed for single-sensor tracking, extensions to the
multi-sensor scenario [10, 11, 12, 12] have also been proposed. An
alternative approach is the multi-Bernoulli filter [3, 13] which uses
Bernoulli RFSs that are characterized by a target state distribution
and a target existence probability.

In the domain of distributed multi-target tracking, the con-
sensus CPHD filter proposed in [2] has each sensor compute its
own estimate, and then sensors fuse their results with those of their
neighbors. The fusion strategy involves computation of the weighted
Kullback-Leibler average [14, 15] of local PHD functions. A similar
approach has been applied to obtain a distributed multi-Bernoulli
filter [16]. Datta Gupta et al. [17] have proposed a distributed
multi-sensor CPHD filter in which sensors sequentially process
and update their local PHD and cardinality distributions. The first
sensor processes its own measurements and passes the data to the
second sensor which then integrates its own measurements. The
chain continues and the output from the last sensor is considered the
final estimate and disseminated backwards through the chain. This
approach mimics the actual update step of the general multi-sensor
CPHD filter [12], but requires maintaining a Hamiltonian path.

1.2. Motivation

After two neighboring nodes communicate, the consensus CPHD fil-
ter computes the weighted Kullback-Leibler average of their PHD
functions, Da(x) and Db(x), which is given by the weighted geo-
metric mean [14]:

Da,b(x) =
[Da(x)]

ω[Db(x)]
1−ω∫

[Da(x)]ω[Db(x)]1−ωdx
(1)

where ω ∈ [0, 1] is a user-defined weight parameter. For pair-wise
averaging between two sensors with the same probability of detec-
tion and clutter rate, one would take ω = 1/2.

Let xt denote the state of one target. If sensor a does not detect a
target and sensor b does, then we have Da(xt) ≈ 0 and Db(xt) > 0.
After fusing the two PHD functions, Da,b(xt) ≈ 0 and the target is
lost even though the target was detected by at least one sensor.

1.3. Contribution

This work proposes a distributed multi-sensor CPHD filter with a
gossip-based fusion strategy to address the issue illustrated above.
Rather than taking the geometric mean we use the arithmetic mean
of the PHD functions. We argue that this leads to more robust fusion
when not all sensors detect a target. The experiments reported in
Sec. 3 illustrate that this leads to faster overall detection of a new
target by the system, and hence better tracking accuracy.



2. DISTRIBUTED GOSSIP CPHD FILTER

2.1. Algorithm overview

We can divide a distributed multi-sensor tracking algorithm into
three stages: prediction, update and fusion. At each time step, each
sensor runs the prediction and update stages locally using only its
own measurements. In the fusion stage, sensors communicate with
each other to reach consensus on their estimates.

In the proposed algorithm, each sensor runs a single-sensor
CPHD filter for the prediction and update stages. In the fusion stage,
sensors fuse their PHD functions and cardinality distributions over
a number of gossip iterations. We describe the fusion strategy in
detail in Section 2.2. Note that, at each gossip iteration, only two
sensors communicate with each other. In contrast, in one consensus
iteration [2], each sensor communicates sequentially with all of its
neighbors.

2.2. Fusion of PHD functions and cardinality distributions

Consider a network of S sensors, and assume that they have identical
detection probabilities and clutter rates. Let Ns denote the neighbors
of sensor s with s′ ∈ Ns if sensor s can receive data from sensor
s′. By definition, s ∈ Ns. Let Ds

k|k(x) and psk|k(n) denote the
estimated PHD function and cardinality distribution of sensor s at
time k after running the prediction and update stages. Since each
sensor only has access to its own measurements, the estimates at

different sensors most likely differ (Ds
k|k(x) �= Ds′

k|k(x), p
s
k|k(n) �=

ps
′

k|k(n), ∀s �= s′). The objective is to fuse all sensors’ local PHD
functions and cardinality distributions, and our algorithm achieves
this by having sensors gossip with their neighbors over a number of
iterations.

Let us focus on one gossip iteration and assume sensors a and b
are gossiping with the sensors’ PHD functions being

Ds(x) =

Ls∑
i=1

ws
iN (x;ms

i , P
s
i ), s ∈ {a, b},

where Ls is the number of mixture components in sensors s’s PHD
function, ms

i are the component means, and P s
i are the covariance

matrices. The weights ws
i are normalized so that

∑Ls
i=1 w

s
i = 1.

When sensors a and b gossip, the two individual GMMs are first
concatenated:

Da,b(x) =

La∑
i=1

wa
i N (x;ma

i , P
a
i ) +

Lb∑
j=1

wb
jN (x;mb

j , P
b
j ).

We then apply a merging/pruning algorithm to the concatenated
GMM (see Algorithm 1). Note that the same merging/pruning
algorithm is also used in GMM-based implementations of the
PHD/CPHD filter [7, 8]. The algorithm requires three threshold
parameters: T , U , and Jmax. Mixture components with weights
below T are truncated. Two components are only merged if their
Mahalanobis distance is below the threshold U , and finally, at most
the Jmax mixture components with the highest weights are retained.
These thresholds prevent the size of the GMM representation (in
particular, the number of mixture components) from growing with-
out bound. In a distributed algorithm, this ensure the communication
overhead of gossiping remains bounded.

The resulting GMM after merging is the fused PHD function.
Note that, in the gossip update, even if only one of the sensors detects

Algorithm 1 Gaussian mixture merging/pruning [7]

Input: J Gaussian mixture components {wi,mi, Pi}Ji=1, trun-
cation threshold T , merging threshold U , maximum number of
components Jmax

1: Set l = 0
2: Set I = {i = 1, 2, ...J |wi > T}
3: while I �= ∅ do
4: l = l + 1
5: j = argmaxi∈I wi

6: L = {i ∈ I|(mi −mj)
T (Pi)

−1(mi −mj) ≤ U}
7: w̃l =

∑
i∈L wi

8: m̃l =
1
w̃l

∑
i∈L wixi

9: P̃l =
1
w̃l

∑
i∈L wi

(
Pi + (m̃l −mi)(m̃l −mi)

T
)

10: I = I\L
11: if l > Jmax then
12: sort {w̃i}li=1: w̃1 ≥ w̃2 ≥ ...w̃l

13: retain only {w̃i, m̃i, P̃i}Jmax
i=1

14: w̃i = w̃i/
∑

i w̃i

Output: {w̃i, m̃i, P̃i}

a target (Da(xt) > 0 and Db(xt) ≈ 0), the target is not necessarily
lost in the fused PHD function.

For fusing the cardinality distributions, we simply average the

two sensors’ local distributions: pa,b(n) = pa(n)+pb(n)
2

.

At each time step, we run a fixed number of gossip iterations
to drive the local PHD functions and cardinality distributions suf-
ficiently close to each other. While formally defining convergence
and computing convergence rate are beyond the scope of this paper,
simulations show that as the number of gossip iterations grows, the
difference between different sensors’ PHD functions and cardinality
distributions tends to zero.

In terms of communication overhead, the gossip approach re-
quires 2Gmax transmissions where Gmax is the number of gos-
sip iterations per time step. The consensus approach requires
2SE(|Ns|)Cmax transmissions where Cmax is the number of
consensus iterations and each sensor communicates with E(|Ns|)
neighbors per iteration, on average. Each transmission contains the
posterior estimates from a single sensor. Conservatively bounding
Gmax ≤ S2/2 and Cmax ≥ 1, the gossip approach requires less
overhead than the consensus approach when E(|Ns|) > 0.5S.

We note that using the (unweighted) arithmetic mean may be
problematic if not all sensors have equal properties (e.g., if some
have lower probability of detection or higher clutter rates than oth-
ers). In such a case, it may be more appropriate to take a weighted
average of the PHD function and cardinality distribution. We leave
a more thorough study of this case for future work.

2.3. Incorporating neighboring sensors’ measurements

We have so far made the restriction that sensors can only access their
own measurements to compute the local PHD function (predict and
update). However, if they have also access to their neighbors’ mea-
surements (which could be done by having each sensor broadcast its
measurements before the prediction stage), then this information can
be used, using the multi-sensor CPHD filter update equations [18] to
derive a more accurate estimate of the PHD function before running
the gossip iterations. We illustrate this idea and show the resulting
performance gain via simulation in Section 3.3.
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Fig. 1. Simulation target trajectories. The number in brackets indi-
cate the time interval during which the target is present. The labels
indicate targets’ final position, and ‘+’s indicate sensor positions.

3. PERFORMANCE EVALUATION

Next we evaluate the performance of the proposed algorithm. We
describe the simulation setup in Section 3.1. In Section 3.2, all sen-
sors only use their own measurements to compute the local estimates
prior to fusion. In Section 3.3, sensors exchange measurements with
their neighbors prior to computing the local estimates.

3.1. Simulation setup

We consider a network of 16 sensors spread over an area of 2000×
2000 m2. Initially, there is only one target in the tracking area.
Three additional targets gradually appear over time. Fig. 1 illustrates
the target trajectories and sensor positions.

The target state is defined as x(k) = [x1(k), x2(k), ẋ1(k), ẋ2(k)]
where x1(k), x2(k) denote the target’s position at time k and
ẋ1(k), ẋ2(k) denote its velocity. The target dynamic follows a
nearly constant linear velocity model:

x(k + 1) =

⎡
⎢⎣

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

⎤
⎥⎦x(k) + w(k),

where Ts = 1s is the sampling interval and w(k) is the zero-mean
Gaussian process noise with covariance matrix Q and noise intensity
σw = 0.25:

Q = σ2
w

⎡
⎢⎢⎣

T 3
s /3 0 T 2

s /2 0
0 T 3

s /3 0 T 2
s /2

T 2
s /2 0 Ts 0
0 T 2

s /2 0 Ts

⎤
⎥⎥⎦ .

We also assume a linear measurement model:

z(k) =

[
1 0 0 0
0 1 0 0

]
x(k) + v(k)

where v(k) is the zero-mean Gaussian measurement noise with co-
variance R = diag([100, 100]).

At each iteration, every sensor makes a set of measurements.
Each measurement corresponds either to a target or to clutter, and
each target can account for up to one measurement at each sensor.
Each sensor detects each target independently and with probability
Pd, and clutter is modeled as a Poisson process with parameter λc =
10 measurements per sensor and uniform spatial distribution.

We compare three algorithms in our simulation: the general
multi-sensor CPHD (GMCPHD) [12, 18], the consensus CPHD [2],
and the proposed gossip CPHD filters. For all three algorithms, we
model the target birth process as a two-component GMM with means
[400, 400, 0, 0] and [−400,−400, 0, 0]. Both components have
weight 0.1 and covariance matrix equal to diag([100, 100, 25, 25]).
The target survival probability is Ps = 0.99. The cardinality distri-
bution has finite support with maximal cardinality equal to 20. For
the merging algorithm, we set T = 10−5, U = 4 and Jmax = 100.

For the two distributed algorithms, sensors i and j are connected
if cij < Pc where cij ∈ U(0, 1) and Pc ∈ [0, 1] is the connectivity
probability. We assume bidirectional communication (i ∈ Nj ⇔
j ∈ Ni) as required for gossiping. We set Gmax = 100 for the
gossip CPHD filter and Cmax = 1 for the consensus CPHD filter.

We use the optimal subpattern assignment (OSPA) error [19]
as our performance metric with cardinality penalty factor c = 25
and power p = 1. For the two distributed algorithms, we compute
the OSPA for each sensor at every time step and report the average.
Unless otherwise specified, all results are averaged over 200 Monte-
Carlo trials. Each trial has the same target trajectories, but different
realizations of clutter and measurement noise. The adjacency matrix
for the network changes for each trial. For the gossip CPHD filter,
the gossiping sensors at different time steps also differ for each trial.

3.2. Local measurements only

Fig. 2(a) compares the three algorithms’ performance with respect
to target detection probability. The gossip CPHD filter consistently
outperforms the consensus CPHD filter with the gap widening as we
lower Pd. At high detection probability, the performance of the gos-
sip CPHD filter approaches that of the centralized GMCPHD filter.

Next, we consider the impact of network connectivity, which di-
rectly translates into the number of neighbors each sensor may have.
As shown in Fig. 2(b), the proposed algorithm’s performance is very
consistent over a wide range of Pc. This is not surprising because, as
long as the network remains connected, gossiping allows the sensors
to reach a consensus, albeit at a slower rate when network connec-
tivity is low. On the other hand, the performance of the consensus
CPHD filter degrades slightly as we increase Pc. Since evaluating
Eq. (1) requires some approximations [20, 2] when the PHD func-
tions are modeled as GMMs, as the number of neighbors increases,
we conjecture that the error from the approximation also accumu-
lates. If no fusion occurs (Pc = 0) and each sensor can only rely on
its own estimates, the average OSPA is much higher.

We compare the estimated target cardinality over time, averaged
over all sensors and all trials, in Fig. 2(c). All three algorithms are
able to estimate the target cardinality with high accuracy. Whenever
a new target appears, the proposed gossip CPHD filter is able to
adapt to the new cardinality faster than the consensus CPHD filter
does.

In lieu of a formal proof of convergence of the proposed gossip
fusion rule, we illustrate the idea by computing the total discrepancy
between the PHD functions of all sensors as a function of the num-
ber of gossip iterations. We adopt a distance metric proposed by
Surajit [21] to compute the discrepancy between two GMMs:

l(Di(x), Dj(x)) =

∫
(Di(x)−Dj(x))2dx, (2)

and define the total discrepancy as

L =

S∑
i=1

S∑
j=i+1

l(Di(x), Dj(x)). (3)
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Fig. 3. Discrepancy ratio vs. gossip iterations, Pd = 0.7, Pc = 0.6.

In Fig. 3, we compute the total discrepancy at time step 80. The
vertical axis corresponds to the ratio of the discrepancy at the current
gossip iteration to the discrepancy prior to gossiping. The figure sug-
gests that, for the type of random network topology simulated, the
total discrepancy decreases roughly exponentially with the number
of pairwise gossip iterations.

3.3. Access to neighboring sensors’ measurements

Next we consider the extension proposed in Section 2.3 and allow
sensors to exchange measurement data with their neighbors. At the
beginning of each time step, all sensors broadcast their measure-
ments to their neighbors. Each sensor then runs a GMCPHD fil-
ter [18] locally to process its own measurements as well as those of
its neighbors. We assume that that each sensor receives all measure-
ment data from its neighbor(s). As shown in Fig. 4, as we increase
the number of neighbors each sensor can share measurement data
with, the performance improves.

Another approach similar to our extension is to disseminate each
sensor’s measurements to the entire network. Once sensors have the
measurements from all nodes in the network, they can derive the
same estimates without gossiping. It is thus worth comparing the
communication overhead in both approaches.

Assume each sensor has an average of 14 measurements
(one from each target plus ten clutter measurements). Dissemi-
nating one sensor’s measurements to the entire network requires
O(

√
S/ logS) transmissions [22]. Thus, for S = 16 sensors, we

need to transmit approximately 1100 scalars.

Next, assume each sensor’s PHD contains 8 components (up to
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Fig. 4. Algorithm performance with respect to number of neighbors
each sensor can exchange measurement data with. At 0, each sensor
only has access to its own measurements. Pd = 0.7, Pc = 0.5.

2 per target). Each component can be represented by 15 scalars. The
cardinality distribution is represented by 21 scalars. For 100 pairwise
gossip iterations, the total overhead is approximately 28000 scalars.

Although gossiping has a much higher overhead, it may still
be desirable or necessary in certain circumstances. For example,
if communication is unreliable and not all measurements are suc-
cessfully disseminated to all other nodes, then the local PHD and
cardinality estimates will gradually diverge unless some additional
synchronization mechanism, such as gossip or consensus, is used.

4. CONCLUSION

In this paper, we present a distributed CPHD filter for multi-target
tracking. Sensors compute the PHD function and cardinality distri-
bution using their own measurements and fuse their results by gos-
siping with their neighbors. Simulations show that the proposed al-
gorithm outperforms existing techniques based on Kullback-Leibler
average. Furthermore, by allowing sensors to exchange measure-
ment data with their neighbors, the proposed algorithm’s perfor-
mance improves significantly. Our future work includes establish-
ing a formal proof of convergence for the proposed gossip updates,
bounding the error between gossip CPHD fusion and GMCPHD up-
dates, and generalizing the gossip fusion rule to handle sensors with
different measurement characteristics (Pd and clutter rate).
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